nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2022, 15, v.37 1388-1392
机器学习在护理领域中的应用研究进展
基金项目(Foundation): 国家自然科学基金(编号:72004020); 四川省干部保健科研课题(编号:川干研-2021-219)
邮箱(Email): wxxjyc@163.com;
DOI: 10.16821/j.cnki.hsjx.2022.15.009
摘要:

随着医疗信息化建设的不断完善,医疗数据资源的不断积累,基于真实世界数据的研究受到广泛关注。作为数据处理的高效工具,机器学习被应用于病理诊断、临床决策及风险预警等多个方面,其在护理领域中的应用也越来越广泛。本文从机器学习在护理不良事件和并发症、康复护理、慢病管理、护理管理、心理护理及中医护理等方面进行系统综述,为开展基于机器学习的护理实践提供参考,以促进学科间的交叉融合发展。

Abstract:

参考文献

[1] EFRON B,HASTIE T.Computer age statistical inference[M].California:Cambridge University Press,2016.

[2] LEE S K,AHN J,SHIN J H,et al.Application of machine learning methods in nursing home research[J].International Journal of Environmental Research and Public Health,2020,17(17):6234.

[3] LINDBERG D S,PROSPERI M,BJARNADOTTIR R I,et al.Identification of important factors in an inpatient fall risk prediction model to improve the quality of care using EHR and electronic administrative data:A machine-learning approach[J].International Jo-urnal of Medical Informatics,2020,143:104272.

[4] 徐洪学,孙万有,杜英魁,等.机器学习经典算法及其应用研究综述[J].电脑知识与技术,2020,16(33):17-19.

[5] 刘天宇.基于机器学习的药品风险分级模型[D].南京:南京邮电大学,2020.

[6] SHAMEER K,JOHNSON K W,GLICKSBERG B S,et al.Machine learning in cardiovascular medicine:Are we there yet[J].Heart(British Cardiac Society),2018,104(14):1156-1164.

[7] COLLINS A G E,COCKBURN J.Beyond dichotomies in reinforcement learning[J].Nature reviews.Neuroscience,2020,21(10):576-586.

[8] 张耀中,胡小方,周跃,等.基于多层忆阻脉冲神经网络的强化化学习及应用[J].自动化学报,2019,45(8):1536-1547.

[9] 徐瑾,邓晓明,晏馥霞.机器学习算法在麻醉领域的应用[J].中国医学科学院学报,2020,42(5):696-701.

[10] ALDERDEN J,PEPPER G A,WILSON A,et al.Predicting pressure injury in critical care patients:A machine-learning model[J].American Association of Critical-Care Nurses,2018,27(6):461-468.

[11] HU Y H,LEE Y L,KANG M F,et al.Constructing inpatient pressure injury prediction models using machine learning techniques[J].Computers Informatics Nursing,2020,38(8):415-423.

[12] CHEN H L,YU S J,XU Y,et al.Artificial neural network:a method for prediction of surgery-related pressure injury in cardiovascular surgical patients[J].Journal of Wound,Ostomy and Continence Nursing,2017,45(1):26-30.

[13] TOPAZ M,MURGA L,GADDIS K M,et al.Mining fall-related information in clinical notes:Comparison of rule-based and novel word embedding-based machine learning approaches[J].Journal of Biomedical Informatics,2019,90:103103.

[14] YE C,LI J,HAO S,et al.Identification of elders at higher risk for fall with statewide electronic health records and a machine learning algorithm[J].International Journal of Medical Informatics,2020,137:104105.

[15] DELGADO-ESCANO R,CASTRO F M,COZAR J R,et al.A cross-dataset deep learning-based classifier for people fall detection and identification[J].Computer Methods and Programs in Biomedicine,2020,184:105265.

[16] IZAWA J,KITAMURA T,IWAMI T,et al.Early-phase cumulative hypotension duration and severe-stage progression in oliguric acute kidney injury with and without sepsis:An observational study[J].Critical care (London,England),2016,20(1):405.

[17] HATIB F,JIAN Z,BUDDI S,et al.Machine-learning algorithm to predict hypotension based on high-fidelity arterial pressure waveform analysis[J].Anesthesiology,2018,129(4):663-674.

[18] KENDALE S,KULKARNI P,ROSENBERG A D,et al.Supervised machine-learning predictive analytics for prediction of postinduction hypotension[J].Anesthesiology,2018,129(4):675-688.

[19] TACK C.Artificial intelligence and machine learning applications in musculoskeletal physiotherapy[J].Musculoskeletal Science and Practice,2018,39:164-169.

[20] CHAE S H,KIM Y,LEE K S,et al.Development and clinical evaluation of a web-based upper limb home rehabilitation system using a smartwatch and machine learning model for chronic stroke survivors:Prospective comparative study[J].JMIR mHealth and uHealth,2020,8(7):e17216.

[21] IWAMOTO Y,IMURA T,TANAKA R,et al.Development and validation of machine learning-based prediction for dependence in the activities of daily living after stroke inpatient rehabilitation:A decision-tree analysis[J].Journal of Stroke and Cerebrovascular Diseases,2020,29(12):105332.

[22] SALE P,FERRIERO G,CIABATTONI L,et al.Predicting motor and cognitive improvement through machine learning algorithm in human subject that underwent a rehabilitation treatment in the early stage of stroke[J].Journal of Stroke and Cerebrovascular Diseases,2018,27(11):2962-2972.

[23] KHAN O,BADHIWALA J H,GRASSO G,et al.Use of Machine learning and artificial intelligence to drive personalized medicine approaches for spine care[J].World Neurosurgery,2020,140:512-518.

[24] DEVRIES Z,HODA M,RIVERS C S,et al.Development of an unsupervised machine learning algorithm for the prognostication of walking ability in spinal cord injury patients[J].The Spine Journal,2020,20(2):213-224.

[25] LIAO Y,VAKANSKI A,XIAN M.A Deep Learning framework for assessing physical rehabilitation exercises[J].IIEEE Trans Neural Syst Rehabil Eng,2020,28(2):468-477.

[26] CARY M P,ZHUANG F,DRAELOS R L,et al.Machine learning algorithms to predict mortality and allocate palliative care for older patients with hip fracture[J].Journal of the American Medical Directors Association,2021,22(2):291-296.

[27] PROCHAZKA A,CHARVATOVA H,VASEGHI S,et al.Machine learning in rehabilitation assessment for thermal and heart rate data processing[J].IEEE Trans Neural Syst Rehabil Eng,2018,26(6):1209-1214.

[28] CONTRERAS I,VEHI J.Artificial intelligence for diabetes management and decision support:Literature review[J].Journal of Medical Internet Research,2018,20(5):e10775.

[29] MCHEICK H,SALEH L,AJAMI H,et al.Context relevant prediction model for COPD domain using bayesian belief network[J].Sensors (Basel),2017,17(7):1486.

[30] GAWLITZA J,STURM T,SPOHRER K,et al.Predicting pulmonary function testing from quantified computed tomography using machine learning algorithms in patients with COPD.[J].Diagnostics (Basel,Switzerland),2019,9(1):33.

[31] DE S K,JONSSON D,DEMMER R T.A combined strategy of feature selection and machine learning to identify predictors of prediabetes[J].Journal of the American Medical Informatics Association:JAMIA,2020,27(3):396-406.

[32] NAGARAJ S B,SIDORENKOV G,VAN BOVEN J F M,et al.Predicting short- and long-term glycated haemoglobin response after insulin initiation in patients with type 2 diabetes mellitus using machine-learning algorithms[J].Diabetes Obes Metab,2019,21(12):2704-2711.

[33] LAM C,YU C,HUANG L,et al.Retinal lesion detection with deep learning using image patches[J].Invest Ophthalmol Vis Sci,2018,59(1):590-596.

[34] LOCIGANIC W H,DONOHUE J M,THORPE J M,et al.Using machine learning to examine medication adherence thresholds and risk of hospitalization[J].Med Care,2015 Aug,53(8):720-728.

[35] YOUSEFI M,YOUSEFI M,FERREIRA R P M,et al.Chaotic genetic algorithm and Adaboost ensemble metamodeling approach for optimum resource planning in emergency departments[J].Artif Intell Med,2018,84:23-33.

[36] YU J Y,JEONG G Y,JEONG O S,et al.Machine learning and initial nursing assessment-based triage system for emergency department[J].Healthc Inform Res,2020,26(1):13-19.

[37] ROJAS J C,CAREY K A,EDELSON D P,et al.Predicting intensive care unit readmission with machine learning using electronic health record data[J].Ann Am Thorac Soc,2018,15(7):846-853.

[38] ZHANG Q,BAI C,YANG L T,et al.A unified smart Chinese medicine framework for healthcare and medical services[J].IEEE/ACM Transactions on Computational Biology and Bioinformatics,2019,18(3):882-890.

[39] 李迪瑶.基于机器学习的中医护理技术辅助辨证模型研究[D].杭州:浙江中医药大学,2020.

[40] TANG Y,ZHAO T,HUANG N,et al.Identification of traditional Chinese medicine constitutions and physiological indexes risk factors in metabolic syndrome:A data mining approach[J].Evid Based Complement Alternat Med,2019,2019:1686205.

[41] KIM H,LEE S,LEE S,et al.Depression prediction by using ecological momentary assessment,actiwatch data,and machine learning:Observational study on older adults living alone[J].JMIR Mhealth Uhealth,2019,7(10):e14149..

[42] MUFTI H N,HIRSCH G M,ABIDI S R,et al.Exploiting machine learning algorithms and methods for the prediction of agitated delirium after cardiac surgery:Models development and validation study[J].JMIR Med Inform,2019,7(4):e14993.

[43] RACINE A M,TOMMET D,D'AQUILA M L,et al.Machine learning to develop and internally validate a predictive model for post-operative delirium in a prospective,observational clinical cohort study of older surgical patients[J].J Gen Intern Med,2020,36(2):265-273.

[44] KOUTSOULERIS N,KAMBEITZILANKOVIC L,RUHRMANN S,et al.Prediction models of functional outcomes for individuals in the clinical high-risk state for psychosis or with recent-onset depression[J].JAMA Psychiatry,2018,75(11):1156-1172.

基本信息:

DOI:10.16821/j.cnki.hsjx.2022.15.009

中图分类号:R47

引用信息:

[1]周丽娟,温贤秀,蒋蓉等.机器学习在护理领域中的应用研究进展[J].护士进修杂志,2022,37(15):1388-1392.DOI:10.16821/j.cnki.hsjx.2022.15.009.

基金信息:

国家自然科学基金(编号:72004020); 四川省干部保健科研课题(编号:川干研-2021-219)

检 索 高级检索